Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38711168

RESUMEN

BACKGROUND AND AIM: Transarterial chemoembolization (TACE) is one of the standard modalities used to treat unresectable hepatocellular carcinoma (HCC), but the effectiveness of TACE for treating patients with a solitary small (≤3 cm) HCC and well-preserved liver function has not been definitively established. This study aimed to determine the therapeutic impact of TACE in patients with these characteristics. METHODS: This multicenter (four university hospitals) retrospective cohort study analyzed the medical records of 250 patients with a solitary small (≤3 cm) HCC and Child-Turcotte-Pugh (CTP) class A liver function diagnosed over 10 years. Posttreatment outcomes, including overall survival (OS), recurrence-free survival (RFS), and adverse events, were assessed following TACE therapy. RESULTS: One hundred and thirty-eight of the 250 patients (55.2%) treated with TACE achieved complete remission (CR). Overall median OS was 77.7 months, and median OS was significantly longer in the CR group than in the non-CR group (89.1 vs. 58.8 months, P = 0.001). Median RFS was 19.1 months in the CR group. Subgroup analysis identified hypertension, an elevated serum albumin level, and achieving CR as significant positive predictors of OS, whereas diabetes, hepatitis c virus infection, and tumor size (>2 cm) were poor prognostic factors of OS. CONCLUSIONS: The study demonstrates the effectiveness of TACE as a viable alternative for treating solitary small (≤3 cm) HCC in CTP class A patients.

2.
Adv Biol (Weinh) ; : e2400210, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712476

RESUMEN

Aging-related bone loss is driven by various biological factors, such as imbalanced bone metabolism from decreased osteoblast and increased osteoclast activities. Various transcriptional and post-transcriptional factors increase osteoclast activity with aging; however, studies regarding the post-translational regulators of osteoclast activity are still limited. The ubiquitin E3 ligase Pellino-1 is a well-known post-translational regulator of inflammation. However, how Pellino-1 expression regulation affects osteoclast differentiation remains unclear. This study determined that Pellino-1 levels are reduced in bone marrow monocytes (BMMs) from 40-week-old mice compared to 4-week-old mice. Interestingly, conditional Knockout (cKO) of Pellino-1 in 6-week-old mice resulted in decreased bone mass, reduced body size, and lower weight than in Pellino-1 floxed mice; however, these differences are not observed in 20-week-old mice. The increased number of tartrate-resistant acid phosphatase (TRAP)-positive cells and serum levels of C-terminal telopeptides of type I collagen, a marker of bone resorption, in 6-week-old Pellino-1 cKO mice implied a connection between Pellino-1 and the osteoclast population. Enhanced TRAP activity and upregulation of osteoclast genes in BMMs from the cKO mice indicate that Pellino-1 deletion affects osteoclast differentiation, leading to decreased bone mass and heightened osteoclast activity. Thus, targeting Pellino-1 could be a potential gene therapy for managing and preventing osteoporosis.

3.
Small ; : e2400915, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597683

RESUMEN

Hole transporting layers (HTLs), strategically positioned between electrode and light absorber, play a pivotal role in shaping charge extraction and transport in organic solar cells (OSCs). However, the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, with its hygroscopic and acidic nature, undermines the operational durability of OSC devices. Herein, an environmentally friendly approach is developed utilizing nickel acetate tetrahydrate (NiAc·4H2O) and [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz) as the NiAc·4H2O/2PACz HTL, aiming at overcoming the limitations posed by the conventional PEDOT:PSS one. Encouragingly, a remarkable power conversion efficiency (PCE) of 19.12% is obtained for the OSCs employing NiAc·4H2O/2PACz as the HTL, surpassing that of devices with the PEDOT:PSS HTL (17.59%), which is ranked among the highest ones of OSCs. This improvement is attributed to the appropriate work function, enhanced hole mobility, facilitated exciton dissociation efficiency, and lower recombination loss of NiAc·4H2O/2PACz-based devices. Furthermore, the NiAc·4H2O/2PACz-based OSCs exhibit superior operational stability compared to their PEDOT:PSS-based counterparts. Of significant note, the NiAc·4H2O/2PACz HTL demonstrates a broad generality, boosting the PCE of the PM6:PY-IT and PM6:Y6-based OSCs from 16.47% and 16.79% (with PEDOT:PSS-based analogs as HTLs) to 17.36% and 17.57%, respectively. These findings underscore the substantial potential of the NiAc·4H2O/2PACz HTL in advancing OSCs, offering improved performance and stability, thereby opening avenue for highly efficient and reliable solar energy harvesting technologies.

4.
Int J Biol Macromol ; : 131884, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38685541

RESUMEN

The importance of ß-glucan from S. cerevisiae in angiogenesis has not been well studied. We investigated whether ß-glucan induces angiogenesis through PI3K/Src and ERK1/2 signaling pathway in HUVECs. We identified that ß-glucan induced phosphorylation of PI3K, Src, Akt, eNOS, and ERK1/2. Subsequently, we found that this phosphorylation increased the viability of HUVECs. We also observed that stimulation of ß-glucan promoted the activity of MEF2 and MEF2-dependent pro-angiogenic genes, including EGR2, EGR3, KLF2, and KLF4. Additionally, the role of ß-glucan in angiogenesis was confirmed using in vitro and ex vivo experiments including cell migration, capillary-like tube formation and mouse aorta ring assays. To determine the effect of ß-glucan on the PI3K/Akt/eNOS and ERK1/2 signaling pathway, PI3K inhibitor wortmannin and ERK1/2 inhibitor SCH772984 were used. Through the Matrigel plug assay, we confirmed that ß-glucan significantly increased angiogenesis in vivo. Taken together, our study demonstrates that ß-glucan promotes angiogenesis via through PI3K and ERK1/2 signaling pathway.

6.
Mar Life Sci Technol ; 6(1): 84-92, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38433962

RESUMEN

Tetramic acid-containing natural products are attracting significantly increasing attention from biologists and chemists due to their intriguing structures and biological activities. In the present study, two new tetramic acid alkaloids tolypyridone I (1) and tolypyridone J (2), together with five known ones (3-7), were isolated from cultures of a marine fungus Tolypocladium cylindrosporum FB06 isolate obtained from a marine sediment in Beaufort sea of North Alaska. Their structures were elucidated using 1D, 2D NMR, and HRESIMS. Their configurations were established on the basis of 1H coupling constants, ROESY correlations and DP4 calculations. Compound 2 was isolated as mixtures of rotational isomers with C-3 to C-7 axis between 4-hydroxy-2-pyridone and 1-ethyl-3,5-dimethylcyclohexane, hindering rotation. In our unbiased screening to discover neuroprotective compounds in an in vitro Parkinson's disease (PD) model, SH-SY5Y dopaminergic cells were treated with isolated compounds followed by treatment with 1-methyl-4-phenylpyridinium (MPP+), a parkinsonian neurotoxin. Among tested compounds, F-14329 (7) significantly protected cells from MPP+-induced cytotoxicity. MPP+-mediated cell death is known to be related to the regulation of Bcl-2 family proteins, specifically the down-regulation of anti-apoptotic Bcl-2 and the up-regulation of pro-apoptotic Bax levels. Treatment with 2 mmol/L of MPP+ for 24 h significantly reduced Bcl-2 levels compared to control treated with vehicle. However, treatment with F-14329 (7) attenuated such reduction. This study demonstrates that tetramic acid-motif compounds could be potential lead compounds for treating PD. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00198-7.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38467326

RESUMEN

Post-traumatic stress disorder (PTSD) is a mental illness that can occur in individuals who have experienced trauma. Current treatments for PTSD, typically serotonin reuptake inhibitors, have limited effectiveness for patients and often cause serious adverse effects. Therefore, a novel class of treatment with better pharmacological profile is necessary. D-Pinitol has been reported to be effective for depression and anxiety disorders, but there are no reports associated with PTSD. In the present study, we investigated the effects of D-pinitol in a mouse model of PTSD induced by a single prolonged stress (SPS) protocol. We examined the therapeutic effects of D-pinitol on emotional and cognitive impairments in the SPS mouse model. We also investigated the effects of D-pinitol on fear memory formation. Mineralocorticoid receptor transactivation assay, Western blot, and quantitative PCR were employed to investigate how D-pinitol exerts its pharmacological activities. D-Pinitol ameliorated PTSD-like behaviors in a SPS mouse model. D-Pinitol also normalized the increased mRNA expression levels and protein levels of the mineralocorticoid receptor in the amygdala. A mineralocorticoid receptor agonist reversed the effects of D-pinitol on fear extinction and recall, and the antagonistic property of D-pinitol against the mineralocorticoid receptor was confirmed in vitro. Our findings suggest that D-pinitol could serve as a potential therapeutic agent for PTSD due to its antagonistic effect on the mineralocorticoid receptor.


Asunto(s)
Inositol/análogos & derivados , Trastornos por Estrés Postraumático , Ratones , Humanos , Animales , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/psicología , Miedo/fisiología , Extinción Psicológica , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapéutico , Modelos Animales de Enfermedad , Estrés Psicológico/psicología
8.
Cancers (Basel) ; 16(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473248

RESUMEN

No information is available regarding the influence of besifovir (BSV), a new nucleotide analogue, on the occurrence of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). This study evaluated the reduced risk of HCC in patients undergoing BSV treatment. A total of 188 patients with CHB were treated with BSV for up to 8 years. We prospectively assessed the incidence of HCC compared with the risk from prediction models. During the follow-up, 5 patients developed HCC: 1 of 139 patients with non-cirrhotic CHB, and 4 of 49 patients with liver cirrhosis. We compared the HCC incidence in non-cirrhotic and cirrhotic patients with the predicted number derived from the REACH-B (risk estimation for HCC in CHB) model and GAG-HCC (guide with age, gender, HBV DNA, core promotor mutation, and cirrhosis) model, respectively. The standardized incidence ratio (SIR) was 0.128 (p = 0.039) at 7 years in non-cirrhotic CHB patients, and the SIR was 0.371 (p = 0.047) at 7.5 years in cirrhotic patients, suggesting a significantly decreased HCC incidence in both groups. HCC prediction was available for BSV-treated patients using existing models. In conclusion, BSV decreased the risk of HCC in patients with CHB, and prediction models were applicable. Clinical trial registry website and trial number: ClinicalTrials.gov no: NCT01937806.

9.
Chem Soc Rev ; 53(9): 4674-4706, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38529583

RESUMEN

High power conversion efficiency (PCE) and long-term stability are essential prerequisites for the commercialization of polymer solar cells (PSCs). Small-molecule acceptors (SMAs) are core materials that have led to recent, rapid increases in the PCEs of the PSCs. However, a critical limitation of the resulting PSCs is their poor long-term stability. Blend morphology degradation from rapid diffusion of SMAs with low glass transition temperatures (Tgs) is considered the main cause of the poor long-term stability of the PSCs. The recent emergence of oligomerized SMAs (OSMAs), composed of two or more repeating SMA units (i.e., dimerized and trimerized SMAs), has shown great promise in overcoming these challenges. This innovation in material design has enabled OSMA-based PSCs to reach impressive PCEs near 19% and exceptional long-term stability. In this review, we summarize the evolution of OSMAs, including their research background and recent progress in molecular design. In particular, we discuss the mechanisms for high PCE and stability of OSMA-based PSCs and suggest useful design guidelines for high-performance OSMAs. Furthermore, we reflect on the existing hurdles and future directions for OSMA materials towards achieving commercially viable PSCs with high PCEs and operational stabilities.

10.
Microbiol Spectr ; 12(4): e0414223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421191

RESUMEN

In an effort to identify novel compounds with potent inhibition against Toxoplasma gondii, a phenotypic screen was performed utilizing a library of 683 pure compounds derived primarily from terrestrial and marine fungi. An initial screen with a fixed concentration of 5 µM yielded 91 hits with inhibition comparable to an equal concentration of artemisinin. These compounds were then triaged based on known biological and chemical concerns and liabilities. From these, 49 prioritized compounds were tested in a dose response format with T. gondii and human foreskin fibroblasts (HFFs) for cytotoxicity. Ten compounds were identified with an IC50 less than 150 nM and a selectivity index (SI) greater than 100. An additional eight compounds demonstrated submicromolar IC50 and SI values equal to or greater than 35. While the majority of these scaffolds have been previously implicated against apicomplexan parasites, their activities in T. gondii were largely unknown. Herein, we report the T. gondii activity of these compounds with chemotypes including xanthoquinodins, peptaibols, heptelidic acid analogs, and fumagillin analogs, with multiple compounds demonstrating exceptional potency in T. gondii and limited toxicity to HFFs at the highest concentrations tested. IMPORTANCE: Current therapeutics for treating toxoplasmosis remain insufficient, demonstrating high cytotoxicity, poor bioavailability, limited efficacy, and drug resistance. Additional research is needed to develop novel compounds with high efficacy and low cytotoxicity. The success of artemisinin and other natural products in treating malaria highlights the potential of natural products as anti-protozoan therapeutics. However, the exploration of natural products in T. gondii drug discovery has been less comprehensive, leaving untapped potential. By leveraging the resources available for the malaria drug discovery campaign, we conducted a phenotypic screen utilizing a set of natural products previously screened against Plasmodium falciparum. Our study revealed 18 compounds with high potency and low cytotoxicity in T. gondii, including four novel scaffolds with no previously reported activity in T. gondii. These new scaffolds may serve as starting points for the development of toxoplasmosis therapeutics but could also serve as tool compounds for target identification studies using chemogenomic approach.


Asunto(s)
Antiprotozoarios , Artemisininas , Productos Biológicos , Malaria , Toxoplasma , Toxoplasmosis , Humanos , Antiprotozoarios/farmacología , Productos Biológicos/farmacología , Artemisininas/farmacología
11.
BMC Vet Res ; 20(1): 24, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216988

RESUMEN

BACKGROUND: Salinomycin, an antibiotic, have potential as a veterinary drug for fish due to its anti-parasitic activity against several fish parasites. Thus the residual levels of salinomycin in muscles of two significant aquaculture species in Korea, olive flounder and black rockfish, were analyzed using HPLC-MS-MS. RESULTS: The proper method to analyze the residual salinomycin in fish muscles using LC-MS-MS was settled and the method was validated according to CODEX guidelines. The residues in three distinct groups for two fish species were analyzed using the matrix match calibration curves at points of five different times following oral administration. After oral administration, salinomycin rapidly breaks down in both olive flounder and black rockfish. After 7th days, the average residue in all groups of two fish spp. decreased below limit of quantitation (LOQ). CONCLUSION: Due to low residue levels in fish muscles, salinomycin may therefore be a treatment that is safe for both fish and humans. This result could contribute to establishment of MRL (minimal residual limit) for approval of salinomycin for use in aquaculture.


Asunto(s)
Enfermedades de los Peces , Lenguado , Perciformes , Policétidos Poliéteres , Piranos , Humanos , Animales , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/parasitología , Peces , Músculos/parasitología , Administración Oral
12.
Biofabrication ; 16(2)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277677

RESUMEN

Conventional 2D or even recently developed 3Din vitroculture models for hypothalamus and pituitary gland cannot successfully recapitulate reciprocal neuroendocrine communications between these two pivotal neuroendocrine tissues known to play an essential role in controlling the body's endocrine system, survival, and reproduction. In addition, most currentvitroculture models for neuroendocrine tissues fail to properly reflect their complex multicellular structure. In this context, we developed a novel microscale chip platform, termed the 'hypothalamic-pituitary (HP) axis-on-a-chip,' which integrates various cellular components of the hypothalamus and pituitary gland with biomaterials such as collagen and hyaluronic acid. We used non-toxic blood coagulation factors (fibrinogen and thrombin) as natural cross-linking agents to increase the mechanical strength of biomaterials without showing residual toxicity to overcome drawbacks of conventional chemical cross-linking agents. Furthermore, we identified and verified SERPINB2 as a reliable neuroendocrine toxic marker, with its expression significantly increased in both hypothalamus and pituitary gland cells following exposure to various types of toxins. Next, we introduced SERPINB2-fluorescence reporter system into loaded hypothalamic cells and pituitary gland cells within each chamber of the HP axis on a chip, respectively. By incorporating this SERPINB2 detection system into the loaded hypothalamic and pituitary gland cells within our chip platform, Our HP axis-on-chip platform can better mimic reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland in the brain microenvironments with improved efficiency in evaluating neuroendocrine toxicities of certain drug candidates.


Asunto(s)
Sistemas Microfisiológicos , Hipófisis , Hipófisis/metabolismo , Hipotálamo/metabolismo , Encéfalo , Materiales Biocompatibles/metabolismo
13.
Cell Chem Biol ; 31(2): 312-325.e9, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995692

RESUMEN

Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Peptaiboles/metabolismo , Peptaiboles/farmacología , Antimaláricos/farmacología , Proteínas de Transporte de Membrana , Permeabilidad de la Membrana Celular
14.
Stem Cell Res Ther ; 14(1): 379, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124100

RESUMEN

The endometrium is a dynamic tissue that undergoes cyclic changes in response to ovarian hormones during the menstrual cycle. These changes are crucial for pregnancy establishment and maintenance. Endometrial stem cells play a pivotal role in endometrial regeneration and repair by differentiating into various cell types within the endometrium. However, their involvement in endometrial disorders such as endometriosis, infertility, and endometrial cancer is still not fully understood yet. Traditional bulk sequencing methods have limitations in capturing heterogeneity and complexity of endometrial stem cell populations. To overcome these limitations, recent single-cell analysis techniques, including single-cell RNA sequencing (scRNA-Seq), single-cell ATAC sequencing (scATAC-Seq), and spatial transcriptomics, have emerged as valuable tools for studying endometrial stem cells. In this review, although there are still many technical limitations that require improvement, we will summarize the current state-of-the-art single-cell analysis techniques for endometrial stem cells and explore their relevance to related diseases. We will discuss studies utilizing various single-cell analysis platforms to identify and characterize distinct endometrial stem cell populations and investigate their dynamic changes in gene expression and epigenetic patterns during menstrual cycle and differentiation processes. These techniques enable the identification of rare cell populations, capture heterogeneity of cell populations within the endometrium, and provide potential targets for more effective therapies.


Asunto(s)
Endometrio , Enfermedades Uterinas , Femenino , Embarazo , Humanos , Células Madre , Enfermedades Uterinas/metabolismo , Ciclo Menstrual , Análisis de la Célula Individual
15.
Adv Mater ; 35(49): e2308334, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37822055

RESUMEN

Laboratory-scale all-polymer solar cells (all-PSCs) have exhibited remarkable power conversion efficiencies (PCEs) exceeding 19%. However, the utilization of hazardous solvents and nonvolatile liquid additives poses challenges for eco-friendly commercialization, resulting in the trade-off between device efficiency and operation stability. Herein, an innovative approach based on isomerized solid additive engineering is proposed, employing volatile dithienothiophene (DTT) isomers to modulate intermolecular interactions and facilitate molecular stacking within the photoactive layers. Through elucidating the underlying principles of the DTT-induced polymer assembly on molecular level, a PCE of 18.72% is achieved for devices processed with environmentally benign solvents, ranking it among the highest record values for eco-friendly all-PSCs. Significantly, such superiorities of the DTT-isomerized strategy afford excellent compatibility with large-area blade-coating techniques, offering a promising pathway for industrial-scale manufacturing of all-PSCs. Moreover, these devices demonstrate enhanced thermal stability with a promising extrapolated T80 lifetime of 14 000 h, further bolstering their potential for sustainable technological advancement.

16.
J Funct Biomater ; 14(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37888181

RESUMEN

For patients with severe burns that consist of contractures induced by fibrous scar tissue formation, a graft must adhere completely to the wound bed to enable wound healing and neovascularization. However, currently available grafts are insufficient for scar suppression owing to their nonuniform pressure distribution in the wound area. Therefore, considering the characteristics of human skin, which is omnidirectionally stretched via uniaxial stretching, we proposed an auxetic skin scaffold with a negative Poisson's ratio (NPR) for tight adherence to the skin scaffold on the wound bed site. Briefly, a skin scaffold with the NPR effect was fabricated by creating a fine pattern through 3D printing. Electrospun layers were also added to improve adhesion to the wound bed. Fabricated skin scaffolds displayed NPR characteristics (-0.5 to -0.1) based on pulling simulation and experiment. Finger bending motion tests verified the decreased marginal forces (<50%) and deformation (<60%) of the NPR scaffold. In addition, the filling of human dermal fibroblasts in most areas (>95%) of the scaffold comprising rarely dead cells and their spindle-shaped morphologies revealed the high cytocompatibility of the developed scaffold. Overall, the developed skin scaffold may help reduce wound strictures in the joints of patients with burns as it exerts less pressure on the wound margin.

17.
Clin Orthop Surg ; 15(5): 704-710, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37811504

RESUMEN

Background: Although most studies focused on the alignment or union of the tibia in same-level distal third tibiofibular fractures, the outcome of a concomitant fibular fracture is generally regarded as being of secondary importance in the literature. This study aimed to assess the outcomes of fibular fractures in same-level distal third tibiofibular fractures. Methods: In this retrospective study, we enrolled 111 patients with same-level distal third tibiofibular fractures treated at our institute between January 2016 and August 2020. Tibial fractures were stabilized with intramedullary nailing, and the cases were divided into two groups based on whether they additionally underwent fibular fixation (group 1, 57 cases) or not (group 2, 54 cases). Clinical and radiographic outcomes were used for the evaluation of tibial and fibular alignments, union of the tibia and fibula, number of interlocking screws in the distal tibial fragment, range of motion of the ankle joint, and complications. Results: No statistically significant differences in the tibial union rate or mean tibial alignment were observed between the two groups on either the immediate postoperative or final radiographs. The fibular union rate in group 1 was significantly higher than that in group 2 (fibular nonunion, 0 vs. 15; p < 0.001). Statistically significant differences in fibular displacement were observed on immediate postoperative radiographs between patients with fibular union and those without it. At the final follow-up, the mean range of ankle motion and lower extremity functional scale scores did not differ between the two groups. Conclusions: Regardless of whether fibular fixation was performed, the overall tibial alignment with intramedullary nailing was well restored and the union rate of the tibia was comparable in the two groups. Fibular nonunion is not uncommon in unfixed fibula fractures. Displacement of the fibula as seen on immediate postoperative radiographs was related to fibular nonunion.


Asunto(s)
Fijación Intramedular de Fracturas , Fracturas de la Tibia , Humanos , Peroné/diagnóstico por imagen , Peroné/cirugía , Estudios Retrospectivos , Fijación Interna de Fracturas , Fracturas de la Tibia/diagnóstico por imagen , Fracturas de la Tibia/cirugía , Tibia/cirugía , Resultado del Tratamiento
18.
Biomed Eng Lett ; 13(4): 571-577, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37872981

RESUMEN

The surgical application of robotics has increased significantly since its first application in 1985 for a brain biopsy acquisition. Robotic-assisted surgery has been one of the viable options in various surgical areas, and also in orthopaedic surgery. Robotic-assisted orthopaedic surgery has gained popularity as a mean of improving accuracy, reducing complications and achieving better patient satisfaction. Numerous clinical research studies have demonstrated advantages of robotic-assisted orthopaedic surgery, however, most of that researches were about the total knee arthroplasty, total hip arthroplasty and spine surgery. The application of robotic technology in foot and ankle surgery is in a very nascent stage. Furthermore, there has been little research on intraoperative use of robotics in foot and ankle surgery in literature. A review of previous preclinical studies in foot and ankle robotics and clinical research studies in various fields of robot-assisted orthopaedic surgery shows that its potential application and benefits over conventional techniques, such as total ankle arthroplasty, minimally invasive surgery for foot and ankle trauma or other corrective procedure, and intraoperative biomechanical testing. More studies on practical application of robotic technology to surgical procedure in the field of foot and ankle surgery are needed to confirm its clinical usefulness and cost effectiveness.

19.
Kidney Res Clin Pract ; 42(5): 617-627, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37813524

RESUMEN

BACKGROUND: Identifying genetic mutations in individuals with inherited cystic kidney disease is necessary for precise treatment. We aimed to elucidate the genetic characteristics of cystic kidney disease in the Korean population. METHODS: We conducted a 3-year prospective, multicenter cohort study at eight hospitals from May 2019 to May 2022. Patients with more than three renal cysts were enrolled and classified into two categories, typical autosomal dominant polycystic kidney disease (ADPKD) and atypical PKD. We identified the clinical characteristics and performed a genetic analysis using a targeted gene panel. RESULTS: A total of 725 adult patients were included in the study, of which 560 (77.2%) were diagnosed with typical ADPKD and 165 (22.8%) had atypical PKD. Among the typical ADPKD cases, the Mayo imaging classification was as follows: 1A (55, 9.9%), 1B (149, 26.6%), 1C (198, 35.8%), 1D (90, 16.3%), and 1E (61, 11.0%). The atypical PKD cases were classified as bilateral cystic with bilateral atrophic (31, 37.3%), lopsided (27, 32.5%), unilateral (nine, 10.8%), segmental (eight, 9.6%), bilateral cystic with unilateral atrophic (seven, 8.4%), and asymmetric (one, 1.2%). Pathogenic variants were found in 64.3% of the patients using the ciliopathy-related targeted gene panel. The typical ADPKD group demonstrated a higher discovery rate (62.3%) than the atypical PKD group (41.8%). CONCLUSION: We present a nationwide genetic cohort's baseline clinical and genetic characteristics for Korean cystic kidney disease.

20.
Materials (Basel) ; 16(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37687760

RESUMEN

As the world is paying attention to the seriousness of environmental pollution, the need for a resource circulation economy is emerging due to the development of eco-friendly industrial groups. In particular, the recycling of thermoplastic elastomers without cross-link has been highlighted in the plastics field, which has rapidly developed the industry. Growing interests have been directed towards the advancement of thermoplastic polyether-ester elastomer (TPEE) as a material suitable for the circular economy owing to its remarkable recyclability, both in terms of mechanical and chemical processes. Due to its excellent processability, simple mechanical recycling is easy, which is a driving force towards achieving price competitiveness in the process. In molding TPEE resin, it is essential to check the thermal properties of the resin itself because the thermal properties, including the melting and crystallization temperatures of the resin, depend on the design of the polymer. In this study, the thermal and mechanical performances of TPEE blends were evaluated by manufacturing compounds by changing the amount of recycled resin and additives. When the recycled resin was added, the melt flow index (MFI) changed rapidly as the temperature of the melt flow index measurement increased. Rapid changes in MFI make the fiber spinning process uncontrollable and must be controlled by optimizing the addition of compatibilizers. Based on the thermal property results, compatibilizers such as Lotader and Elvaloy series exhibited minimal change in glass transition temperature, even with greater amounts added. This makes them well-suited as compatibilizers for fiber spinning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA